   # Program

Prep Math

The purpose of this course is to provide students with an understanding of mathematical language in English., to improve the student’s ability to express their understanding in English in addition to further developing thinking and problem solving skills. The course aims to constitute a strong basis and level of understanding for further high school education.

The topics are:

Review of Natural Numbers, Integers, Rational Numbers and Decimals

• Translating Words into Symbols
• Operations and Their Properties
• Solving Linear Equations and Problems
• Sets
• Prime Numbers & Divisibility
• GCD & LCM
• Geometry
• Coordinate Plane
• Systems of Linear Equations and Inequalities
• Ratio and Proportion
• Percentages
• Exponents
• Roots

Grade 9 introduces some new concepts and extends others that were introduced in year 8 and below. The grade 9 course will prepare students with mathematical skills . Students will learn to solve some real-life problems during Grade 9. This will help them extend their mathematical thinking beyond the classroom giving it more relevance..

The topics are:

*Logic

*Sets

*Number sets, divisibility rules

*Linear equations and inequalities; exponents and exponential equations

*Triangles

*Statistics, Measures of Central tendency and spread; Graphing the data

The topics are:

*Counting, permutations and combinations

*Functions

*Polynomials

*Space geometry; solids

This course introduces several topics of fundamental importance in mathematics, and in particular, calculus. The primary focus of this course is the study of functions. We will explore the concept of a function as well as the basic, yet important examples of functions, including polynomial, quadratic, exponential, logarithmic, trigonometric, linear, piecewise defined, and absolute value functions, line equations, permutation- combination and probability. In addition, quadrilaterals and circle will be studied.

The purpose of this course is to encourage students to relate the concepts to solving daily-life problems The concepts, results and problems are expressed graphically, numerically, analytically and verbally. The topics are Trigonometry,, Analytic study of lines, Quadratic functions, transformations; systems of quadratic equations in two unknowns ,Circle and circular region and probability.

AP Calculus is primarily concerned with developing the students’ understanding of the concepts of calculus and providing experience with its methods and applications. The courses emphasize a multi-representational approach to calculus, with concepts, results, and problems being expressed graphically, numerically, analytically, and verbally (the Rule of Four). The connections among these representations also are important. The functions are expressed.

The students will also receive a strong foundation for university education.

Students should

• be able to work with functions represented in a variety of ways: graphical, numerical, analytical, or verbal. They should understand the connections among these representations.

• be able to communicate mathematics and explain solutions to problems both verbally and in written sentences.

• be able to model a written description of a physical situation with a function, a differential equation, or an integral.

• be able to use technology to help solve problems, experiment, interpret results, and support conclusions.

• be able to determine the reasonableness of solutions, including sign, size, relative accuracy, and units of measurement.

The topics for AB and BC :

*Functions

*Limit and Continuity

*Differentiation

*Integration

*Differential equations

The topics only for BC:

*Polar functions

*Sequences and series; convergence tests

*Polynomial approximations of functions; Taylor series

*Differential equations

The purpose of this course is to develop the students’ understanding of the fundamental concepts of Calculus. The students will also receive a strong foundation for the university education.

The topics :

*Exponential and logarithmic functions

*Trigonometry

*Fundamental transformations in the Cartesian plane

*Limit and Continuity

*Differentiation

*Integration

*Analytic study of circles.

Elective Courses:

SAT1 : Prepares the students to the SAT1 –Math exam . It covers all the topics needed for SAT1.

SAT 2 :Prepares the students for the Math-Subject test. It covers all the topics needed for SAT-subject test.